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Introduction

Dementia impacts over 55 million individuals [1]. The global cost resulting

from dementia is estimated to be $2 trillion in 2030 [2]. Given its increasing

prevalence and the resultant personal and societal burden, dementia is one

of the most critical public health issues of our time.

Early detection of dementia is critical for effective illness management [3].

However, current diagnosis methods can be resource-intensive and

time-consuming. As a result, assessment and monitoring of dementia at

scale can be challenging, specifically for individuals living in remote regions.

Speech and language changes can signal early dementia onset. Recent ML

models using speech show promise for automated assessment at scale [4, 5].

However, prior work has not adequately addressed the privacy-accuracy

trade-off of these models. For example, features used in some of these

models can be used to reconstruct utterances [6, 7]. This is a serious

concern given the models are using data from a vulnerable population.

Our objective is to evaluate this tradeoff for dementia detection using

speech data and differential privacy (DP) techniques.

Our contributions

1. Establish benchmark on tradeoff using DPwith varying ε budget.

2. Demonstrate the feasibility of DP for privacy-preserving dementia

classification.

3. Provide insights on optimizing models for intended use case.

Experimental Setup

Figure 1. The Differential Privacy methodology used in this work selects minibatches from the

training data, clips the calculated gradients and adds gaussian noise. This is repeated for the

duration of the training phase.

Data: DementiaBank Pitt and WLS speech corpora

1. Pitt: 459 recordings from 292 subjects, cookie theft task

2. WLS: 116 recordings, verbal fluency task

3. Labels using MMSE scores and diagnostic criteria

Preprocessing:

1. Convert MP3 to WAV

2. Downsample to 16kHz, trim audio to participant speech

3. Extract log-mel spectrogram features (librosa)

Feature: Reshaped spectrogram images (224x224)

Model Architecture: ResNet-18 finetuned for binary dementia classification

Method: Five-fold cross-validation setup and early stopping criteria.

Prevents overfitting

Platform: PyTorch on an NVIDIA Tesla V100-SXM2-32GB GPU

Optimizer: Stochastic Gradient Descent (SGD) optimizer for standard

model, and DP-SGD optimizer for private model (Opacus library)

see paper for optimizer parameters

Loss criterion: Cross Entropy

Parameters:

Delta (δ): Set to 3e-4 (based on dataset)

Epsilon (ε): [0.1, 0.5, 1, 5, 10, 50, 100]. When ε→ ∞, we get non-DP case.

Max Grad Norm (C ): The maximum L2 norm of per-sample gradients

before the averaging step aggregates them. We have chosen the following

values: [0.1, 0.5, 1, 5, 10].

Experiments:

Classification Task: 2-class Dementia classification.

Comparison: Evaluate DP against non-DP models.

Hyperparameter Tuning: Vary the ε privacy budget to investigate its effect

on accuracy and select the optimal ε value for performance.

Results

Figure 2. Privacy-Accuracy Tradeoff in Dementia Prediction using DP-SGD: Investigating

Hyperparameter Impact on Combined WLS and Pitt Corpus Datasets

Performance Comparison

Table 1. Accuracy for varying values of ε and C with constant δ. As ε increases, accuracy is

observed to improve. Bold numbers show the best performance per ε row.

↓ε\C→ C= 0.1 C= 0.5 C= 1 C= 5 C= 10

ε = 0.1 45.94 45.35 42.83 44.58 45.34

ε = 0.5 46.26 47.38 46.72 45.95 46.21

ε = 1 48.29 51.5 48.62 51.48 48.75

ε = 5 58.98 57.73 53.41 57.72 55.19

ε = 10 60.28 59.72 60.32 59.71 59.46

ε = 50 65.87 66.44 67.46 64.54 65.89

ε = 100 67.03 69.25 68.78 68.46 68.92

Table 2. ε v/s σ values for the experiments

ε 0.1 0.5 1 5 10 50 100

σ 130 10.78 16.25 2.22 1.37 0.77 0.37

ε · σ 13 5.39 16.25 11.1 13.7 38.5 37.2

In a nutshell

Increasing ε improves accuracy; ε and σ tuning is context-specific.

Discussion

Privacy-Accuracy Trade-off: As ε increases, accuracy improves to 94.2%.

Regularization parameter C has a less pronounced impact.

Need for better regulation & methods: Recent works [8] have shown

inconsistencies in privacy parameters across organizations, with some

exceeding recommended levels of ε, posing risks to user privacy [9].
Future work: DP-SGD shows a significant drop in accuracy compared to

non-DP methods. Approaches like dynamic privacy budgeting or combining

multiple privacy-enhancing techniques could offer better trade-offs. What,

then, is a good privacy budget?

Data & Code Availability

Data Source: DementiaBank speech corpus [10].

Code Repository: https://github.com/suhasbn/SpeechDP.
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